Formate dehydrogenase gene diversity in lignocellulose - feeding insect gut microbial communities

نویسنده

  • Xinning Zhang
چکیده

The bacterial Wood-Ljungdahl pathway for CO2-reductive acetogenesis is important for the nutritional mutualism occurring between wood-feeding insects and their hindgut microbiota. A key step in this pathway is the reduction of CO2 to formate, catalyzed by the enzyme formate dehydrogenase (FDH). Putative selenocysteine(Sec) and cysteine(Cys) containing paralogs of hydrogenase-linked FDH (FDHH) have been identified in the termite gut acetogenic spirochete, Treponema primitia, but knowledge of their relevance in the termite gut environment remains limited. In this study, we designed degenerate PCR primers for FDHH genes (fdhF) and assessed fdhF diversity in insect gut bacterial isolates and the gut microbial communities of termites and roaches. The insects examined herein represent the wood-feeding termite families Termopsidae, Kalotermitidae, and Rhinotermitidae (phylogenetically “lower” termite taxa), the wood-feeding roach family Cryptocercidae (the sister taxon to termites), and the omnivorous roach family Blattidae. Sec and Cys FDHH variants were identified in every wood-feeding insect but not the omnivorous roach. Of 68 novel phylotypes obtained from inventories, 66 affiliated phylogenetically with enzymes from T. primitia. These formed two sub-clades (37 and 29 phylotypes) almost completely comprised of Sec-containing and Cys-containing enzymes, respectively. A gut cDNA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formate dehydrogenese gene phylogeny in higher termites suggests gut microbial communities have undergone an evolutionary bottleneck, convergent evolution, and invasion

The majority of termites and termite species on the planet belong to the phylogenetically ‘higher’ termite family Termitidae. Higher termites thrive on diverse lignocellulosic substrates with the aid of symbiotic gut microbiota. H2 consuming CO2 reductive acetogenic bacteria are an important group of symbionts that produce a significant fraction of the acetate used by their insect host as its p...

متن کامل

Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. T...

متن کامل

Evidence for Cascades of Perturbation and Adaptation in the Metabolic Genes of Higher Termite Gut Symbionts

UNLABELLED Termites and their gut microbes engage in fascinating dietary mutualisms. Less is known about how these complex symbioses have evolved after first emerging in an insect ancestor over 120 million years ago. Here we examined a bacterial gene, formate dehydrogenase (fdhF), that is key to the mutualism in 8 species of "higher" termite (members of the Termitidae, the youngest and most bio...

متن کامل

RNA-Seq and microfluidic digital PCR identification of transcriptionally active spirochetes in termite gut microbial communities

CO2-reductive acetogenesis in termite hindguts is a bacterial process with significant impact on the nutrition of wood-feeding termites. Acetogenic spirochetes have been identified as key mediators of acetogenesis. Here, we use high-throughput, short transcript sequencing (RNA-Seq) and microfluidic, multiplex digital PCR to identify uncultured termite gut spirochetes transcribing genes for hydr...

متن کامل

Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy.

Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a "lower," wood-feeding termite. First, environmental transcripto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010